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Abstract Morphogenetic process is an interesting but very hard bio-chemical
problem. In this paper, we consider a bio-chemical model in temporal morphogen-
esis which is a generalization of the model studied by Gierer–Meinhardt. By using
the theory of ordinary differential equations, it is shown that the model undergoes
a Hopf bifurcation if the parameters in the model satisfy the following relationship:
λ = 2/(ρ2 + x∗)− 1. It is also proved that the close orbit created by the Hopf bifurca-
tion is stable. The conditions that guarantee the system has three closely nested limit
cycles are also obtained in the paper.

Keywords Hopf bifurcation · Temporal morphogenesis · Bio-chemical reaction ·
Limit cycles

1 Introduction

It is known that morphogenetic process is one of the most interesting problems in mod-
ern bi-chemistry. Much work has been devoted to this topic for the past decades [1–6],
among which the first bio-chemical model of temporal organization in morphogenetic
process was proposed by Gierer–Meinhardt [1]. If a is the activator concentration, and
h, the inhibitor concentration, the model takes the form:
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da

dt
= ρρ0 + cρ

a2

h
− µa,

(1)
dh

dt
= c′ρa2 − νh,

where ρρ0 is the source concentration for the activator and ρ the one for the inhib-
itor; µ and ν the degradation coefficients of a and h, respectively. The parameters
c and c′ are connected with the activator and inhibitor production. The system can be
understood in this way: two molecules of activator are necessary to activate and one
to inhibit the source.

System (1) was studied numerically in [1,7] and analytically in [2]. The possible
existence of state self-sustained oscillations of the model was investigated [1], and
then proved in [2] by using the Hopf bifurcation. However, conditions for the unique-
ness of limit cycle of (1) have never been reported. Recently, Huang, et al. modified
system (1) as follows [4,5]:

da

dt
= ρρ0 + cρ

a2

h
− µa

(2)
dh

dt
= ρ

(
c1a + c2a2

)
− νh.

It is easy to see that term c′a2 in the second equation of (1) is replaced by c1a + c2a2

in system (2). This is because that, in the complicated morphogenetic bio-chemical
process, the rate of change of the inhibition concentration is also proportional to the
concentration of the activator, not just the square of it.

As is well known, the concept of limit cycles in a differential equation model
is related to the periodic oscillation between the concentrations of the activator and
inhibitor of the temporal organization in morphogenetic processes. Thus, any results
regarding the limit cycles of the mathematical model are useful in understanding and
analyzing the morphogenetic processes. In this paper, by using qualitative analysis, a
Hopf bifurcation at λ = 2/(ρ2 + x∗) − 1 is proved, and we also investigate stability
property of the close orbits created by the bifurcation.

After the paper of May [8], the existence of one and only one limit cycle in a
bi-chemical system became a primary problem in bio-mathematics. As a bichemist, a
family of three closely nested limit cycles (the outer ones stable, the one in the middle
unstable) is equally important. This is because a three closely nested limit cycles is
better in describing bi-chemical reality. Our last theorem in the paper is for the con-
ditions that guarantee the system has at least three closely nested limit cycles. Our
results cover the main theorems in [1–3,7] as special cases c1 = 0, c2 = c′.

2 The model

Performing the transform: a = νc
µc2

x , h = νc2

µ2c2
y, dt = y

µ
dτ , and letting ρ1 = ρ0c2

νc ,

ρ2 = µc1
νc , λ = ν

µ
, system (2) becomes
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dx

dτ
= ρ

(
ρ1 y + x2

)
− xy

(3)
dy

dτ
= ρλ

(
ρ2xy + x2 y

)
− λy2.

The above change of time variables: dt = (y/µ)dτ is similar to the one in Poincaré
transformation (dτ = dt/zm , where z is also a state variable). It follows that system
(3) is topologically equivalent to system (2) if y �= 0, and any qualitative result for
system (3) is also valid for system (2).

Due to the bi-chemical background, we just need to study system (3) in �+ =
{(x, y) |x > 0, y > 0 }. In the following discussion, we still use t instead of τ as our
time variable.

A simple calculation tells that (3) has only one positive equilibrium point A(x∗, y∗)
in �+, where

x∗ = 1 + ρρ1 − ρ2 +
√

(1 + ρρ1 − ρ2)
2 + 4ρρ1ρ2

2
y∗ = ρρ2x∗ + ρx∗2,

which is the nonzero solution of the system:

ρ
(
ρ1 y + x2

)
− xy = 0

(4)
ρ

(
ρ2x + x2

)
− y = 0.

In order to discuss the Hopf bifurcation and the stability of the close orbits due to
the bifurcation, we need to recall the following results for the existence and uniqueness
of limit cycles in system (3) (see [5]):

Lemma 1 All the solutions of system (3) are bounded in �+ for t > 0.

Lemma 2 For λ ≥ 1, there is no limit cycle in �+.

Lemma 3 The necessary and sufficient condition for there is one and only one limit
cycle in system (3) in �+ is λ < 2/(ρ2 + x∗) − 1.

Denote

R = 2/(ρ2 + x∗) − 1, µ = λ − R = λ − 2/(ρ2 + x∗) + 1. (5)

Lemma 4 (i) if ρ2 + x∗ > 2, or if ρ2 + x∗ < 2 and λ > 2/(ρ2 + x∗) − 1, then
A(x∗, y∗) is a stable node or focus of system (3);
(ii) if λ < 2/(ρ2 + x∗) − 1, then A(x∗, y∗) is an unstable node or focus. We assume
ρ2 + x∗ < 2/(1 + λ) in the following discussion.

Theorem 1 If µ = 0, or λ = 2/(ρ2 + x∗) − 1, then the equilibrium A(x∗, y∗) of
system (3) is a first order central focus, and it is stable if 1 < ρ2 + x∗ < 2, and
unstable if ρ2 + x∗ < 1.
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Proof By the transformation: x = u + x∗, y = v + y∗, system (3) is now

du

dt
= (2ρx∗ − y∗)u + (ρρ1 − x∗)v + ρu2 − uvλ,

dv

dt
= (ρρ2λy∗ + 2ρλx∗y∗)u − λy∗v

+ (ρρ2λ + 2ρλx∗)uv + ρλy∗u2 − λv2 + ρλu2v.

For the simplicity, denote m = (ρρ2λy∗ + 2ρλx∗y∗), n = −λy∗, then we have

m = −ρt (ρ2 + 2x∗), q + n2 = ρ2λx∗2(ρ2 + 2x∗).

Now we make another transformation:

u = λy∗

ρλy∗(ρ2 + 2x∗)
X −

√
q

ρλy∗(ρ2 + 2x∗)
Y, v = X, dτ = √

qdt,

that is

X = v,

Y = −ρλy∗(ρ2 + 2x∗)√
q

u + λy∗
√

q
v.

Rewrite dτ as dt , system (3) is now equivalent to

dX

dt
= −Y + A1 X2 + A2Y 2 + A3 XY + A4 X3 + A5 X2Y + A6 XY 2,

(6)
dY

dt
= X + B1 X2 + B2Y 2 + B3 XY + B4 X3 + B5 X2Y + B6 XY 2,

where

A1 = − ρn3

m2√q
, A2 = −ρn

√
q

m2 , A3 = −
(

2ρn2

m2 + 1

y∗

)
,

A4 = ρλn2

m2√q
, A5 = 2ρnλ

m2 , A6 = ρλ
√

q

m2 ,

B1 = ρn4 − ρn2m − m2n

m2q
, B2 = ρn2

m2 − ρ

m
,

B3 = 1√
q

(
2ρn3

m2 + n

y∗ − 2ρn + m

m

)
,

B4 = − ρλn3

m2√q
, B5 = −2ρn2λ

m2 , B6 = −ρnλ

m2 .
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Using the following formal series:

F(X, Y ) = X2 + Y 2 +
∞∑

i=3

Fi (X, Y ), (7)

where Fi (X, Y ) is the ith homogenous polynomial of X and Y whose coefficients will
be determined late. Let the 3rd order homogenous polynomials in dF

dt

∣∣
(6)

be zero, we
solve the system of equations:

2A1 X3 + 2A2 XY 2 + 2A3 X2Y − Y
∂ F3

∂ X

+ X
∂ F3

∂Y
+ 2B1 X2Y + 2B2Y 3 + 2B3 XY 2 = 0,

− Y
∂ F3

∂ X
+ X

∂ F3

∂Y
= −2A1 X3 − 2B2Y 3 − (2A2 + 2B3)XY 2 − (2A3 + 2B1)X2Y.

It follows that

F3(X, Y ) = − 2A1 X2Y + 2B2 XY 2 − 2

3
(2A3 + A2 + B3)Y

3

+ 2

3
(A3 + B1 + 2B2)X3.

Substitute F3(X, Y ) into (6), and then let the 4th order homogenous polynomials in
dF
dt

∣∣
(6)

be zero, and solve the equation

− Y
∂ F4

∂ X
+ X

∂ F4

∂Y
= − 2A4 X4 − (2A5 + 2B4)X3Y − (2A6 + 2B5)X2Y 2 − 2B6 XY 3

− (B1 X2+B2Y 2+B1 XY )
∂ F3

∂Y
−(A1 X2 + A2Y 2 + A3 XY )

∂ F3

∂ X
= ω1 X4 + ω2 X3Y + ω3 X2Y 2 + ω4 XY 3 + ω5Y 4,

where,

ω1 = −2(A4 + A1 A3 + 2A1 B2),

ω2 = −2A5 − 2B4 − 4B1 B2 + 2A1 B3 + 4A2 − 2A2
3 − 2A3 B1 − 4A3 B2,

ω3 = 4A1 B1 + 2B1 B3 − 2A6 − 2B5 − 4B2 B3 − 2A2 A3 − 4A2 B2 + 4A1 A3,

ω4 = 4A1 B3 + 2A2 B3 + 2B2
3 − 2B6 − 4B2

2 + 4A1 A2 − 2A3 B2,

ω5 = 4A1 B2 + 2B2 B3.

Use the polar coordinates: X = r cos θ , Y = r sin θ , then
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dF4(cos θ, sin θ)

dθ
= H4(cos θ, sin θ)

= ω1 cos4 θ + ω2 cos3 θ sin θ + ω3 cos2 θ sin2 θ + ω4 cos θ sin3 θ.

Let C4 be defined as − 1
2π

∫ 2π

0 H4(cos θ, sin θ), then

C4 = − 1

8
(3ω1 + 3ω5 + ω3)

= − 1

4q
(−3A4

√
q − A6

√
q − B5

√
q − A1 A3 + B2 B3 + 2A1 B1 + B1 B3

− A2 A3 − 2A2 B2)

= − 1

4m2q
√

q
(−ρλn2mq − 4ρ2n3q − ρn2mq + ρλm2q + 2ρ2nmq

+ ρm2q − ρmn4 − ρλn4m − 2ρ2n5 + ρλn2m2 + 2ρ2n3m + 3ρn2m2

+ λnm3 + nm3 − 2ρ2nq2)

= − 1

4nq
√

q(ρ2 + 2x∗)

[
λn2(n2 + q) + n2(n2 + q) + ρλn(ρ2 + 2x∗)(n2 + q)

− 2ρn(n2 + q) + ρn(ρ2 + 2x∗)(n2 + q) + 2ρn3(ρ2 + 2x∗)
− ρλn3(ρ2 + 2x∗)2 − ρn3(ρ2 + 2x∗)2 −2ρ4λ2x∗4(ρ2 + 2x∗)

]

= −ρ4λ2x∗4(ρ2 + 2x∗)
2λy∗q

√
q

(ρ2 + x∗ − 1).

It is easy to see that ρ2 + x∗ − 1 �= 0, otherwise y∗ = ρx∗(ρ2 + x∗) = ρx∗, which
implies that x∗ = 0. Therefore, C4 �= 0, and the equilibrium A(x∗, y∗) is a first-order
central focus. If 1 < ρ2 + x∗ < 2, then C4 < 0 and A(x∗, y∗) is stable; it is unstable
if ρ2 + x∗ < 1. The proof of Theorem 1 is complete. ��

Before we go to next theorem, we introduce the following Lemma [9].

Lemma 5 Consider the system

dx

dt
= X (x, y, µ),

dy

dt
= Y (x, y, µ), (8)

where, (x, y) ∈ U ⊆ R2, the parameter µ ∈ J ⊆ R, X and Y are analytic functions
of x, y, µ. If for µ = 0, (0, 0) is a stable (or unstable) central focus of system (8), and
if for µ > 0, it is a unstable (or stable) focus, then for sufficiently small µ > 0, there
exists at least one stable (or unstable) limit cycle around (0, 0); furthermore, when
µ → 0, the limit cycle approaches to (0, 0). If the above condition µ > 0 is changed
to µ < 0 (0 < |µ| << 1), the conclusion is also true.

For system (3), choose µ in (5) as a bifurcation parameter.
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Theorem 2 System (3) undergoes a Hopf bifurcation at µ = 0, or at λ = 2/(ρ2 +
x∗) − 1. The periodic solution created by the bifurcation is stable if 1 < ρ2 + x∗ < 2
and unstable if ρ2 + x∗ < 1.

Proof In the case of 1 < ρ2 + x∗ < 2, by Theorem 1, at µ = 0, A(x∗, y∗) is a stable
first order central focus. By Lemma 4(ii), for µ < 0, A(x∗, y∗) is unstable focus, then
Lemma 5 implies that for 0 < |µ| << 1, there exists a stable limit cycle surrounding
the equilibrium point A. For the case when ρ2 + x∗ < 1, Theorem 1 implies that at
µ = 0, A(x∗, y∗) is a unstable first order central focus, and Lemma 4(i) indicates, for
µ > 0, A(x∗, y∗) is stable focus, then Lemma 5 implies that for 0 < µ << 1, there
exists an unstable limit cycle surrounding A. Theorem 2 is proved.

For the multiple limit cycles, we denote (x p, yp) as the coordinates of P and recall
the annular region C DE F HC in [5], where C is the point defined as C(ρρ1, ρ

2ρ1ρ2 +
ρ3ρ2

1 ), and D = D (1 + ρρ1, yC ) the intersection of the lines y = yC and x = 1+ρρ1.
It follows that D is on the right of the line x = x∗ because

x∗ = 1 + ρρ1 − ρ2 +
√

(1 + ρρ1 − ρ2)
2 + 4ρρ1ρ2

2
≤ 1 + ρρ1.

Consider the auxiliary system:

dx

dt
= ρx2 − y,

(9)
dy

dt
= λy(ρx2 − y).

For y < ρx2, the trajectory of system (9) passing through point D is the curve DE :
y = c0eλx , where, c0 = yC e−λ(1+ρρ1). Since this curve goes to +∞ exponen-
tially as x increases, and the isocline y = ρx2/(x − ρρ1) has a linear asymptote
y = ρx + 2ρ2ρ1, then the curve DE must intersect with y = ρx2/(x − ρρ1), say,
at point E(xE , yE ). Assume the line x = xE intersects with y = ρx2 + ρρ2x at
F (xF , yF ), and the line y = yF with x = ρρ1 at H . It is proved that the region
bounded by the boundaries of C DE F HC is a Poincaré-Bendixson annular region
and all limit cycles around the equilibrium A(x∗, y∗) are inside the region [5].

Consider the following auxiliary system

dx

dt
= x (Fi (x) − y)

dy

dt
= y(λρ(ρ2x + x2) − λy), (10.i)

x(0) > 0, y(0) > 0, i = 1, 2.

The functions F1(x) = ρx2/(x − ρρ1), and F2 will be determined later.
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Suppose (xe, ye) is the equilibrium point of (10.i). In other words,

xe = 1

2

(
1 + ρρ1 − ρ2 +

√
(1 + ρρ1 − ρ2)2 + 4ρρ1ρ2

)
,

ye = F1(xe) = F2(xe).

Let P0 = (x0, y0), with ρρ1 < x0 < xe, 0 < y0 < ye, be a point on the parabola y =
ρx2 +ρρ2x , 
i be the orbit of system (10.i) starting at P0. Suppose that Ai , Qi , Bi are
the first points (in time spent) of intersecting with the curves: y = ρx2+ρρ2x, x > xe,
y = ye, ρρ1 < x < xe, and y = ρx2 + ρρ2x, x < xe, respectively. Let J be the
intersection of y = ye and y = ρx2/(x − ρρ1) with ρρ1 < xJ < 2ρρ1 ≤ xe. ��

Then, we have the following Lemma 6.

Lemma 6 Suppose

F1(x) ≤ F2(x) for x ∈ [ρρ1, xe],
F1(x) ≥ F2(x) for x ∈ [xe,xE ], (11)

with strict inequality for some x ∈ [0, xe] and [xe, xE ], respectively. Then

(i) yA1 > yA2 , (i i) yB1 < yB2 , (i i i) xQ1 < xQ2 ,

(iv) yBi ≤ Fi (xQi ) for ρρ1 < x < xe, i = 1, 2.

Proof Let the vector Vi be defined as

Vi =
(

x(Fi (x) − y), y(ρλ(ρ2x + x2) − λy), 0
)

, i = 1, 2. (12)

Consider the cross product of V1 and V2,

V1 × V2 =
(

0, 0, λxy(ρρ2x + ρx2 − y)(F1(x) − F2(x))
)

. (13)

Since (11),

λxy(ρρ2x + ρx2 − y)(F1(x) − F2(x)) ≥ 0, for ρρ1 < x ≤ xE .

Hence, the flow of (10.1) is always directed outside with respect to the one of
(10.2). Therefore, (i)–(iii) hold. Suppose 
i intersects with the isocline y − Fi (x) =
0 (ρρ1 ≤ x ≤ xe) at Si . Then, since

dy

dt
< 0 for ρρ1 < x < xe, y > ρx2 + ρρ2x,

dx

dt
< 0 for ρρ1 < x < xe, Fi (x) − y < 0, i = 1, 2,
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dx

dt
= 0 for Fi (x) − y = 0, i = 1, 2,

dx

dt
> 0 for ρρ1 < x < xe, Fi (x) − y > 0, i = 1, 2,

we have

xSi ≤ xQi and yB1 ≤ yQ1 = Fi (xQi ), i = 1, 2.

Thus (iv) is also valid and the proof of Lemma 6 is completed.
Now following the argument of the existence of limit cycles in [10,11], there exists

δ > 0 such that

y0 − yB1(y0) < 0 for all y0 ∈ (0, δ).

Here B1 is the intersection of the orbit 
1(xe, y0) and the parabola y = ρx2 + ρρ2x ,
ρρ1 < x < xe. It follows that yB1(y0), the y coordinate of B1, is a continuous function
of y0.

Fix δ, any orbit starting at the point (x0, y0) =
(

−ρρ2+
√

ρ2ρ2
2+4ρy0

2ρ
, y0

)
with

y0 ∈ (δ/2, ye) will be remained in the region: {(x, y) |y > 0, ρρ2 < x < xE }.
Moreover, by the boundedness of solutions with the initial vales x(0) = x0 =
−ρρ2+

√
ρ2ρ2

2+4ρy0

2ρ
, y(0) = y0 ∈ (δ/2, ye) (see [10,11]), we can assume, if a limit

cycle of system (3) exists, it must be inside a circle. Suppose it is inside the circle

(x − xe)
2 + (y − ye)

2 = r2
0 , r0 ∈ (0, ye). (14)

Define F2(x) as

F2(x) =
{

F(x) ρρ1 < x ≤ xJ ,

ye xJ ≤ x ≤ xE .
(15)

Clearly, F2(x) is continuous and satisfies Lipschitz’s condition.
Consider the system (10.i) and the orbit: 
i (x0, y0) starting at (x0, y0), i = 1, 2.

We are in a position to prove the theorem of the existence of multiple limit cycles. ��
Theorem 3 In addition to (11), if system (3) satisfies

(i) ρ2 + x∗ < 2/(1 + λ),

(ii) there exists ȳ ∈ (0, ye − r0) such that ȳ > F(xQ2(ȳ)),

where Q2( = S2, in such defined F2) is the intersection of 
2(xe, ȳ) and the line seg-
ment y = ye, ρρ1 < x < xe, then system (3) has at least three nested limit cycles
around (xe, ye).
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Proof Define the function ρ(y0) as

ρ(y0) = y0 − yB1(y0), (16)

where B1 is the intersection of 
1(x0, y0) and the parabola y = ρx2 + ρρ2x , for
ρρ1 < x < xe. Since (xe, ye) is unstable, if y0 < ye and y0 is sufficiently close to ye,

ρ(y0) > 0. (17)

By Lemma 3, system (3) has at least one limit cycle around (xe, ye). Thus, we can
find a y1 ∈ (ye − r0, ye) such that

ρ(y1) = 0. (18)

The stability of the above limit cycle implies that there exists δ1 > 0 such that

ρ(y0) < 0 for y0 ∈ (y1 − δ1, y1). (19)

Now, by Lemma 6 and (ii),

yB1(ȳ) ≤ F1
(
xS1(ȳ)

)

< ȳ.

Thus

ρ(ȳ) > 0. (20)

Fig. 1 The flow of (10.1) is always directed outside with respect to the flow of (10.2)
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Since ρ(y0) is continuous with respect to y0, there exist

y2 ∈ (ȳ, y1) and y3 ∈ (0, ȳ),

such that

ρ(y2) = ρ(y3) = ρ(y1) = 0.

Clearly each orbit starting at

((
−ρρ2 +

√
ρ2ρ2

2 + 4ρyi

)
/(2ρ), yi

)
, i = 1, 2, 3 is

a limit cycle of system (3). We thus complete the proof of Theorem 3. (Fig. 1). ��
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